Creatinin Jaffe Kinetisch Fluid (1+1)

Testkit ausschließlich für die klinische Forschung!

Laborbedarf für klinische Forschungszwecke!

Artikelnummer: Packungsgröße:

114446 5 x 50 ml + 5 x 50 ml

Farbtest zur kinetischen Bestimmung von Creatinin ohne Enteiweisung.

Prinzip

In alkalischer Lösung, bildet Creatinin einen Farbkomplex mit Pikrinsäure. (Jaffe Methode ohne Enteiweisung)

Reagenz

Endkonzentration im Test

1. NaOH 187.8 mmol/l Phosphat 7.5 mmol/l

2. Pikrinsäure 8.73 mmol/l

Das verschlossene Reagenz ist stabil bis zum angegebenen Verfalldatum bei Lagerung zwischen + 18℃ und 22°C.

(Pikrinsäure nicht unter 4°C. lagern, sonst vor Verwendung erwärmen und einige Zeit aufschütteln)

Probenmaterial

Serum / Plasma. Urine 1+ 49 verdünnen mit physiologischer Kochsalzlösung.

Qualitätskontrolle

Alle Kontrollseren mit: Creatinin Jaffe Kinetik Werten.

Linearität

Im Falle von Werten über 5 mg/dl oder 442 □mol/l Creatinin im Serum oder im 1+ 49 verdünnten Urin Ist die Messung zu wiederholen, mit einer weiteren Verdünnung 1 + 5 . (mit physiolog. Kochsalzlösung 9 g/l ≥ 154 mmol/l) Das Ergebnis ist mit 6 zu multiplizieren.

Klinische Interpretation

Für die Interpretation der Messergebnisse dient der Referenzbereich aus dem medizinischen Routinelabor. Dieses Reagenz ist nicht für die Routinebestimmungen im Bereich der Labormedizin gemäß IVDD zertifiziert.

Im Serum / Plasma:

M.: 10 - 60 Jahre 0,6- 1,1 mg/dl: 53 - 97 μ mol/l F.: 10 - 60 Jahre 0,5- 0,9 mg/dl: 44 - 80 μ mol/l

Im Urin

Erwachsene: 0.6 - 2.0 g/24h: 90 - 300 mg/d

Creatinin Clearance

M.: 98 - 156 ml/min F.: 95 - 160 ml/min

Pipetierschema für manuelles Messverfahren

Wellenlänge: Hg 492/500 nm /Cd 509 nm Lichtweg: 1 cm Temperatur: 25 $^{\circ}$ / 37 $^{\circ}$

Reagenz 1 und Reagenz 2 mischen, im Verhältnis 1 (Puffer) + 1 (Pikrinsäure)

Stabilität des Reaktionsgemisches:

bei +2°C bis + 8°C : 28 Tage bei +18°C bis + 22°C : 8 Stunden

	Standard	Serum/Plasma	Urine
Reagenzgemisch	1000 μΙ	1000 µl	1000 μΙ
Standard	200 µl	-	-
Sample (Probe)	-	200 µl	200 µl

Messen der Absorption von Probe A (Sample 1) und A (Standard 1). Nach exakt 5 min. bei 25°C. messen Absorption von Probe A (Sample 2) und A (Standard 2).

Bei 37°C. nach 3 min. die Messung 2 durchführen.

Berechnungen

$$\frac{A (S 2) - A (S 1)}{A (Std 2) - A (Std 1)} x 2 = mg/dl Creatinin$$

 $(x 176,8 = \mu mol/l Creatinin)$

Urin:

$$\frac{A (S 2) - A (S 1)}{A (Std 2) - A (Std 1)} \times 100 = mg/dl$$
 Creatinin

(x 8,84 = mmol/l Creatinin)

A = Extinktion

Entsorgung

Reagenz ist nach Ablauf des angegebenen Verfalldatums entsprechend den gesetzlichen Vorschriften fachgerecht zu entsorgen. Die fachgerechte Entsorgung obliegt dem Labor. Abgelaufene Reagenzien werden nicht vom Hersteller bzw. Vertreiber zurück genommen.

Literatur

- 1 Foster-Swanson A, Swartzentruber M, Roberts P et al. Reference Interval Studies of the Rate-Blanked reatinine/Jaffé Method on BM Systems in Six U.S. Laboratories. Clin Chem 1994; Abstract No 361.
- 2 Whelton A. Nitrogen metabolites and renal function. In: Burtis CA, Ashwood ER (Hrsg.). Tietz Textbook of Clinical Chemistry, 2 Auflage. Philadelphia, Pa: WB Saunders Company, 1994.

Hersteller:

WAK-Chemie GmbH Siemensstr. 9 61449 Steinbach